Diketahui garis singgung lingkaran x ^ 2 + y ^ 2 – 10/3 * x – 3y + 132/36 = 0 yang tegak lurus dengan garis 3x – 4y + 10 = 0 adalah g1 dan g2 Jika titik A merupakan titik singgung garis g1 dan titik B merupakan titik singgung garis g2 . maka panjang AB adalah…
A. 3 1/2
B. 2 1/3
C. 1/3
D. 2 2/3
Jawaban: 3/2 √5
Ingat!
Persamaan lingkaran x² + y² + Ax + Bx + C = 0 dengan titik pusat (a,b) dan jari-jari r
a = -A/2
b = -B/2
r = √(A²/4 + B²/4 – C)
Persamaan garis singgung lingkaran yang berpusat (a, b) gradien m adalah
y – b = m(x – a) ± r√(1 + m²)
Jika garis l dan g tegak lurus maka gradien garis l = gradien garis g.
Gradien garis y = mx + c adalah m
Jarak dua titik (x1, y1) dan (x2, y2) adalah √((x2 – x1)² + (y2 – y1)²)
Pembahasan:
1. Mencari gradien garis singgungnya
Garis singgung tegak lurus dengan 3x – 4y + 10 = 0
4y = 3x + 10
y = 3/4 x + 10/4
m = 3/4
Misal m1 merupakan gradien garis singgung, diperoleh:
m1 . m = -1
m1 . (3/4) = -1
m1 = – 4/3
2. mencari titik pusat dan jari- jari lingkaran x² + y² – 10/3 x – 3y + 132/36 = 0
A = -10/3, B = -3 , C = 132/36
a = -A/2 = -(-10/3)/2 = 10/6
b = -B/2 = -(-3)/2 = 3/2
r = √(A²/4 + B²/4 – C)
= √((-10/3)²/4 + (-3)²/4 – 132/36)
= √((100/9)/4 + 9/4 – 136/36)
= √(100/36 + 81/36 – 136/36)
= √(45/36)
= 3/4 √5
2. Mencari persamaan garis singgung lingkaran yang berpusat di (10/6, 3/2), jari-jari 3/4 √5 dan gradien m = -4/3
Persamaan garis singgungnya:
y – b = m(x – a) ± r√(1 + m²)
y – 3/2 = -4/3 (x – 10/6) ± 3/4 √5 . √(1 + (-4/3)²)
y – 3/2 = -4/3 x + 40/18 ± 3/4 √5 . √(9/9 + 16/9)
y = -4/3 x + 3/2 + 40/18 ± 3/4 √5 . √(25/9)
y = -4/3 x + 27/18 + 40/18 ± 3/4 √5 . 5/3
y = -4/3 x + 67/18 ± 5/4 √5
diperoleh:
g1: y = -4/3 x + 67/18 + 5/4 √5
g2: y = -4/3 x + 67/18 – 5/4 √5
3. Mencari persamaan garis jari-jarinya karena garis singgung selalu tegak lurus dengan jari-jarinya.
m1 = gradien garis singgungnya = -4/3
m = gradien jari-jari
m . m1 = -1
m . (-4/3) = -1
m = -1 . (-3/4)
m = 3/4
Jari-jari melalui titik pusat (10/6 , 3/2) dengan gradien m = 3/4, persamaannya adalah:
y – y1 = m(x – x1)
y – 3/2 = 3/4 (x – 10/6)
y = 3/4 x – 30/24 + 3/2
y = 3/4 x – 30/24 + 36/24
y = 3/4 x + 6/24
y = 3/4 x + 1/4
4. Mencari titik A dan B
titik A merupakan titik singgung garis g1 dan titik B merupakan titik singgung garis g2.
Titik A:
persamaan jari-jari = g1
3/4 x + 1/4 = -4/3 x + 67/18 + 5/4 √5
3/4 x + 4/3 x = 67/18 + 5/4 √5 – 1/4
25/12 x = 125/36 + 5/4 √5
x = 12/25 (125/36 + 5/4 √5)
x = 5/3 + 3/5 √5
Subtitusi x = 5/3 + 3/5 √5 ke pers. jari-jari
y = 3/4 x + 1/4
y = 3/4 (5/3 + 3/5 √5) + 1/4
y = 5/4 + 9/20 √5 + 1/4
y = 3/2 + 9/20 √5
Diperoleh titik A(5/3 + 3/5 √5, 3/2 + 9/20 √5)
Titik B:
persamaan jari-jari = g2
3/4 x + 1/4 = -4/3 x + 67/18 – 5/4 √5
3/4 x + 4/3 x = 67/18 – 5/4 √5 – 1/4
25/12 x = 125/36 – 5/4 √5
x = 12/25 (125/36 – 5/4 √5)
x = 5/3 – 3/5 √5
Subtitusi x = 5/3 – 3/5 √5 ke pers. jari-jari
y = 3/4 x + 1/4
y = 3/4 (5/3 – 3/5 √5) + 1/4
y = 5/4 – 9/20 √5 + 1/4
y = 3/2 – 9/20 √5
Diperoleh titik B(5/3 – 3/5 √5, 3/2 – 9/20 √5)
5. Mencari panjang AB
Panjang AB
= Jarak A dan B
= √((x2 – x1)² + (y2 – y1)²)
= √((5/3 – 3/5 √5 – (5/3 + 3/5 √5))² + (3/2 – 9/20 √5 – (3/2 + 9/20 √5))²)
= √((5/3 – 3/5 √5 – 5/3 – 3/5 √5)² + (3/2 – 9/20 √5 – 3/2 – 9/20 √5)²)
= √((6/5 √5)² + (- 18/20 √5)²)
= √(36/5 + 81/20)
= √(45/4)
= 3/2 √5
Dengan demikian diperoleh panjang AB adalah 3/2 √5 (Tidak ada pada pilihan jawaban)
Semoga membantu 🙂
Rekomendasi Lain :
- Bayangan titik A oleh refleksi terhadap garis y=x… Bayangan titik A oleh refleksi terhadap garis y=x adalah titik A'(4,−7). Koordinat titik A adalah .... a. (4,7) b. (−4,7) c. (−7,4) d. (−4,−7) e. (7,−4) Jawaban : C. (-7,…
- Persamaan garis singgung kurva y=x-3x+5 yang… Persamaan garis singgung kurva y=x-3x+5 yang sejajardengan garis 5x-y+1=0adalah.... jawaban dari pertanyaan di atas adalah y = 5x-11. Perhatikan penjelasan berikut ya.
- Tentukan panjang ruas garis AB, jika diketahui… Tentukan panjang ruas garis AB, jika diketahui koordinat masing-masing titik. A(-2, 5) dan B(6, 20) Jawaban dari pertanyaan di atas adalah 17 satuan. Perhatikan konsep berikut. Panjang ruas garis AB…
- Carilah titik potong dua garis yang berpotongan… Carilah titik potong dua garis yang berpotongan 4×+3y=4 dan 2×+y=4. Jawaban : (4, -3) Perhatikan penjelasan berikut ya. Diketahui : 4x + 3y = 4 ... (1) 2x + y…
- Persamaan garis yang melalui titik B (2,-3) dan… persamaan garis yang melalui titik B (2,-3) dan tegak lurus garis 3x +2y -5=0 adalah.. Persamaan Garis yang melalui titik (x1,y1) dan tegak lurus garis ax + by + c…
- Bayangan dari Titik dengan A(-1,1),jika diputar… bayangan dari Titik dengan A(-1,1),jika diputar dengan pusat o(0,0)sejauh 90 berlawanan arah jarum jam adalah jawaban untuk soal ini adalah A' (-1, -1) Soal tersebut merupakan materi Rotasi pada transformasi…
- Bayangan titik P(2,3),akibat pencerminan terhadap… Bayangan titik P(2,3),akibat pencerminan terhadap garis Y = 2 adalahh Jawabannya adalah P'(2,1) Ingat Rumus umum refleksi terhadap garis y = h A(x,y)→A'(x',y') = A'(x,2h-y) Dengan x'= x y'=2h -…
- Hasil rotasi dari titik A(3,−2) sebesar 90°… Hasil rotasi dari titik A(3,−2) sebesar 90° berlawanan arah jarum jam, dengan pusat rotasi (0,0) adalah .... jawaban untuk soal ini adalah A' (2,3). Soal tersebut merupakan materi Rotasi pada…
- Tentukan persamaan garis singgung lingkaran… tentukan persamaan garis singgung lingkaran x²+y²=169 di titik (5, -12) Jawaban: 5x - 12y = 169 Ingat! Persamaan garis singgung lingkaran x² + y² = r² yang melalui titik (x1,…
- Tentukan persatuan garis singgung pada lingkaran… Tentukan persatuan garis singgung pada lingkaran (x-2)² + (y-1)² = 2 di titik (3,2). Jawaban: x + y - 5 = 0 Ingat! Untuk lingkaran secara umum dengan titik pusat…
- Titik a (4,2) dan b(-3,4) di cerminkan terhadap… titik a (4,2) dan b(-3,4) di cerminkan terhadap garis x.hasil bayangan a dan b adalah.... Jawaban: a'(4, -2) dan b'(-3, -4) Ingat! titik A(x, y) jika dicerminkan terhadap sumbu x…
- Tentukan panjang ruas garis AB, jika diketahui… Tentukan panjang ruas garis AB, jika diketahui koordinat masing-masing titik. A(3, -8) dan B(-7, 16) Jawaban dari pertanyaan di atas adalah 26 satuan. Perhatikan konsep berikut. Panjang ruas garis AB…
- Diketahui lingkaran L berdiameter AB dengan… Diketahui lingkaran L berdiameter AB dengan koordinat titik A(3,−4) dan B(−1,−2). Persamaan lingkaran L adalah a.x²+y²−2x+6y+10=0 b. x²+y²+2x−6y−10=0 c. x²+y²−2x+6y+5=0 d. x²+y²+2x−6y+10=0 e. x²+y²−2x−6y+5=0 Jawabannya adalah c. x² + y²…
- Pada lingkaran yang berjari jari 17 cm terdapat tali… Pada lingkaran yang berjari jari 17 cm terdapat tali busur dengan panjang 30 cm . jarak terpendek dari titik pusat ke tali busur adalah .... A. 5 cm B. 8…
- Persamaan lingkaran dengan pusat (2, -3) dan melalui… persamaan lingkaran dengan pusat (2, -3) dan melalui titik (-2 , -6) adalah Jawaban yang benar adalah x² + y² - 4x + 6y - 12 = 0 Untuk menentukan…
- Tentukan persamaan garis singgung lingkaran x² + y²… Tentukan persamaan garis singgung lingkaran x² + y² + 6x - 4y = 45 melalui titik (2,6). Jawaban: 5x + 4y - 51 = 0 Ingat! Untuk lingkaran secara umum…
- Persamaan garis singgung kurva y = 2x² + x + 1… Persamaan garis singgung kurva y = 2x² + x + 1 dititik berabsis - 1 adalah... jawaban yang benar adalah 3x + y = -1. Konsep: Persamaan garis singgung kurva…
- Jelaskan cara menemukan kemiringan garis lurus yang… Jelaskan cara menemukan kemiringan garis lurus yang melalui dua titik berikut : (4,6 ) dan (2,9) Jawaban dari pertanyaan di atas adalah -3/2 Perhatikan konsep berikut. Misalkan terdapat garis yang…
- Tentukan garis singgung lingkaran x²+y²-5=0 melalui… 1. Tentukan garis singgung lingkaran x²+y²-5=0 melalui titik (-2,-1). Jawaban: -2x - y - 5 = 0 Ingat! Untuk lingkaran secara umum x² + y² = r², jika garis singgung…
- Diketahui titik (4,3) terletak pada lingkaran… Diketahui titik (4,3) terletak pada lingkaran x²+y²+ax+10y+15=0. Nilai a yang memenuhi adalah... Jawaban yang benar untuk pertanyaan tersebut adalah a = -17,5. Ingat! Pada persamaan lingkaran x² + y² +…
- Jika diketahui titik P adalah titik bagi antara ruas… Jika diketahui titik P adalah titik bagi antara ruas garis AB dengan perbandingan 3:2. Jika titik A(0,1,5) dan B(0,−4,5), maka berapakah titik kordinat P? Jawabannya adalah P(0, -2, 5) Kita…
- Posisi garis x + 2y - 1 terhadap garis x² + y² = 4 adalah... Posisi garis x + 2y - 1 terhadap garis x² + y² = 4 adalah... jawaban dari pertanyaan di atas adalah memotong lingkaran di dua titik. Perhatikan penjelasan berikut ya.
- Tentukan panjang ruas garis AB, jika diketahui… Tentukan panjang ruas garis AB, jika diketahui koordinat masing-masing titik. A(3, 15) dan B(15, 10) Jawaban dari pertanyaan di atas adalah 13 satuan. Perhatikan konsep berikut. Panjang ruas garis AB…
- Jika ujung diameter suatu lingkaran berada pada… jika ujung diameter suatu lingkaran berada pada titik titik K (-1,2) dan L (3, 8), maka persamaan lingkarannya adalah jawaban yang benar adalah x² + y² - 4x - 6y…
- Tentukan persamaan garis singgung pada lingkaran… Tentukan persamaan garis singgung pada lingkaran berikut! L=(x-4)²+(y-2)²= 1 dengan gradien 1 Jawaban : y = x - 2 + √(2) atau x - 2 - √(2) Konsep : Persamaan…
- Titik P(6,−4) ditranslasikan oleh [(2)(−2)].… Titik P(6,−4) ditranslasikan oleh [(2)(−2)]. Bayangan titik P adalah .... A. P'(8,6) B. P'(−8,−6) C. P'(−8,6) D. P'(8,−6) Jawaban dari pertanyaan di atas adalah D. Perhatikan konsep berikut. Translasi suatu…
- Sebuah lingkaran dengan pusat (a, b) menyinggung… Sebuah lingkaran dengan pusat (a, b) menyinggung sumbu-x, menyinggung sumbu- y dan menyinggung garis x + y = 2, nilai a adalah ... (A) √2 - 1 (B) √3 -…
- Ruas garis adalah ruas garis adalah ruas garis adalah sebagian dari garis yang dibatasi oleh dua titik ujung yang berbeda
- Posisi titik P terhadap titik Q adalah ... Perhatikan gambar ! Posisi titik P terhadap titik Q adalah ... Jawaban yang benar adalah (2,2). Ingat! Jika A(x1, y1) dan B(x2, y2) maka posisi titik A terhadap B adalah…
- Koordinat titik P(9,-3) dan Q(-5,10) maka panjang PQ adalah. Koordinat titik P(9,-3) dan Q(-5,10) maka panjang PQ adalah. Jawaban: 19,1 satuan Ingat! Jarak titik (x1, y1) dan (x2, y2) adalah √((x2 - x1)² + (y2 - y1)²) Pembahasan: titik…