Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)=2x^3 – x^2 – 4x + 1
Jawaban yang benar adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Perhatikan beberapa aturan turunan fungsi berikut:
> Jika f(x) = u ± v, maka f'(x) = u’ ± v’
> Jika f(x) = ax^(n), maka f'(x) = n.a.x^(n – 1)
> Jika f(x) = x^(n), maka f'(x) = n.x^(n – 1)
> Jika f(x) = kx, maka f'(x) = k
> Jika f(x) = k, maka f'(x) = 0 ; k = konstanta
Ingat!
Interval turun fungsi f(x) dapat ditentukan apabila f'(x) < 0, sedangkan interval naik fungsi f(x) apabila f'(x) > 0 .
Pembahasan,
Diketahui:
f(x) = 2x³ – x² – 4x + 1
Maka,
f'(x) = 3.2.x^(3-1) – 2.x^(2-1) – 4 + 0
f'(x) = 6x² – 2x – 4
• interval kurva naik
f'(x) > 0
6x² – 2x – 4 > 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (memenuhi)
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (tidak memenuhi, karena daerah yang dicari adalah > 0 )
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (memenuhi)
Sehingga, interval kurva naik adalah x < -2/3 atau x > 1
• interval kurva turun
f'(x) < 0
6x² – 2x – 4 < 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (memenuhi)
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Sehingga, interval kurva turun adalah -2/3 < x < 1
Jadi, jawabannya adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Rekomendasi Lain :
- Fungsi f dinyatakan oleh f(x) = ax + b. Jika f(1) =… Fungsi f dinyatakan oleh f(x) = ax + b. Jika f(1) = -1 dan f(3) = 5, maka nilai a dan b berturut-turut adalah … jawaban untuk soal ini adalah…
- Suatu fungsi linear didefinisikan dengan f (x) = ax… Suatu fungsi linear didefinisikan dengan f (x) = ax + b, dengan x R. Jika pada fungsi tersebut diketahui f (2) = 7 dan f (5) = 13, maka nilai…
- Tentukan interval nilai x untuk kurva naik dan kurva… Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)= x^2 - 6x + 7 Jawaban yang benar : Interval kurva naik : x > 3 Interval…
- jika 0,1818181818181.. dinyatakan ke dalam bentuk… jika 0,1818181818181.. dinyatakan ke dalam bentuk a/b dengan a dan b masing masing bilangan bulat positif maka nilai dari b - a adalah... A. 6 B. 7 C. 8 D.9…
- Daun pintu panjangnya 2 m dan tingginya 1,8 m. Jika… Daun pintu panjangnya 2 m dan tingginya 1,8 m. Jika digambar dengan tinggi 5 cm, berpa cm kah panjangnya? Jawaban : 5,55 cm Ingat! Perbandingan senilai adalah perbandingan dua besaran…
- Perhatikan grafik fungsi kuadrai Tentukan : sumbu simetri Perhatikan grafik fungsi kuadrai Tentukan : sumbu simetri Jawaban dari pertanyaan di atas adalah x = 2 Perhatikan konsep berikut. Persamaan kuadrat yang melalui (x1, 0) dan (x2, 0) dirumuskan:…
- Nada C ke f dalam tangga nada C berjarak... Nada C ke f dalam tangga nada C berjarak... a. 1/2 b. 1 c. 1 1/2 d. 2 1/2 Jawaban yang benar adalah D. 2 1/2. Yuk simak pembahasan berikut.…
- Dua kota berjarak 1.000 km, Jika kedua kota itu… Dua kota berjarak 1.000 km, Jika kedua kota itu digambar pada peta dengan skala 1 : 100.000, tentukan jarak kedua kota tersebut pada peta. Jawaban : 1.000 cm Ingat! konsep…
- Diketahui fungsi f dengan f(x) = x(x*2 + 3x - 72).… Diketahui fungsi f dengan f(x) = x(x*2 + 3x - 72). Nilai x> 0 agar f'(x)=0 adalah…. Jawabannya adalah x=4 Silahkan lihat penjelasannya berikut ini. Konsep yang digunakan: Jika f(x)…
- Kurva permintaan yang dihadapi produsen monopoli adalah .... Kurva permintaan yang dihadapi produsen monopoli adalah .... Jawaban: Menurun dari kiri atas ke kanan bawah Penjelasan: Monopolis adalah sebutan bagi penjual yang ada di pasar monopoli. Pasar monopoli merupakan…
- Berikut ini, fungsi manakah yang memiliki nilai… Berikut ini, fungsi manakah yang memiliki nilai maksimum atau minimum? f(x) = 16 − 9x² Jawaban yang benar fungsi f(x) = 16 − 9x² memiliki nilai maksimum. Perhatikan konsep berikut.…
- Tentukan turunan pertama fungsi f(x) =(2x²+1). (3x-2) Tentukan turunan pertama fungsi f(x) =(2x²+1). (3x-2) Jawaban yang benar untuk pertanyaan tersebut adalah f(x)' = 18x² - 8x + 3. Ingat turunan fungsi aljabar dalam bentuk perkalian! Misalkan fungsi:…
- Kurva yang menggambarkan berbagai kemungkinan… Kurva yang menggambarkan berbagai kemungkinan kombinasi output maksimum pada saat sumberdaya ekonomi dan teknologi digunakan sepenuhnya dinamakan.... a. total product curve b. Production possibility curve c. isoquant curve d. price,…
- Sebuah menara tampak pada layar tipi dengan tinggi… Sebuah menara tampak pada layar tipi dengan tinggi 24 cm dan lebar 10 cm. Berapakah lebar sebenarnya menara tersebut jika tinggi sebenarnya 18 m. Jawaban yang benar adalah 7,5 m…
- Diketahui P adalah himpunan bilangan cacah kurang… Diketahui P adalah himpunan bilangan cacah kurang dari 6 dan Q adalah himpunan bilangan real. Relasi dari P ke Q ditentukan oleh f : x → 3x – 5. Tentukan…
- Domain dari fungsi F(×)=4×-8 adalah.... Domain dari fungsi F(×)=4×-8 adalah.... Domain Fungsi Domain atau daerah asal suatu fungsi adalah interval nilai dimana fungsi tersebut terdefinisi. f(x) = 4x - 8 fungsi f terdefinisi pada semua…
- Pak Isa membagikan permen kopiko kepada 5 orang… 7. Pak Isa membagikan permen kopiko kepada 5 orang siswa kelas 11 MA Hayatul Muttaqin menurut aturan deret aritmetika. Semakin tinggi nilai siswa semakin banyak permen kopiko yang diperoleh. Jika…
- Saat harga barang Rp 16.000 per unit, permintaan… Saat harga barang Rp 16.000 per unit, permintaan Dini sebanyak 18 unit. Namun, saat harga barang turun menjadi Rp 14.000 per unit, permintaan Dini naik sebanyak 22 unit. Berapa fungsi…
- Diketahui f(X)=ax+b.Jika f(-3)=-11 Dan f(7)=9… Diketahui f(X)=ax+b.Jika f(-3)=-11 Dan f(7)=9 Tentukan: a.Nilai A Dan B b.Rumus fungsi X Jawaban: a. a = 2 dan b = -5 b. f(x) = 2x - 5 Ingat! Jika…
- Sederhanakan perbandingan berikut : 50 m² : 30 dm² Sederhanakan perbandingan berikut : 50 m² : 30 dm² Jawaban soal ini adalah 500 : 3 Ingat! Perbandingan atau rasio adalah cara atau metode yang digunakan dalam membandingkan dua besaran…
- Interval yang memiliki jarak 1 1/2 pada penggalan… Interval yang memiliki jarak 1 1/2 pada penggalan melodi lagu diatas adalah... a. mi (3) ke sol (5) b. fa (4) ke mi (3) c. sol (5) ke la (6)…
- Jika secan A = 2 , maka nilai cos ²A - Sin ²A jika secan A = 2 , maka nilai cos ²A - Sin ²A jawaban dari pertanyaan di atas adalah -1/2. Perhatikan penjelasan berikut ya.
- Salah satu akar persamaan kuadrat 2x² + qx - 5 = 0… Salah satu akar persamaan kuadrat 2x² + qx - 5 = 0 adalah -1, maka nilai q yang tepat adalah.. Jawaban : -3 Ingat! Jika m merupakan salah satu akar…
- Tentukan kedudukan lingkaran K: x²+y²-2x-8=0… Tentukan kedudukan lingkaran K: x²+y²-2x-8=0 terhadap lingkaran L: x²+y²+4x-8y+16=0 Jawaban: bersinggungan Ingat! Langkah penyelesaian: 1. Eliminasi kedua persamaan lingkaran hingga mendapatkan persamaan garis 2. Subtitusi persamaan garis tersebut ke salah…
- Jika diketahui a+b=31 b+c=42 a+c=27 maka nilai dari… jika diketahui a+b=31 b+c=42 a+c=27 maka nilai dari 3a+3b+3c adalah diketahui persamaan a+b = 31 ..... (1) b+c = 42 ..... (2) a+c = 27 ..... (3) eliminasi a dengan…
- Suatu fungsi di definisikan dengan f (x) = ax +b.… Suatu fungsi di definisikan dengan f (x) = ax +b. Jika f (4) = -1 dan f (7) = 5, maka tentukan: Nilai a dan b. Jawaban yang benar adalah…
- Persamaan garis singgung kurva y=x-3x+5 yang… Persamaan garis singgung kurva y=x-3x+5 yang sejajardengan garis 5x-y+1=0adalah.... jawaban dari pertanyaan di atas adalah y = 5x-11. Perhatikan penjelasan berikut ya.
- Yang tidak dapat mengubah harga keseimbangan adalah… Yang tidak dapat mengubah harga keseimbangan adalah perubahan A. Harga barang substitusi B. pendapatan konsumen C. Harga input. D. teknologi produksi E. Harga barang bersangkutan Jawabannya E. Pembahasan: Berubahnya harga…
- Diketahui rumus fungsi f(x) = 6 - 2x . Jika f(a) =… Diketahui rumus fungsi f(x) = 6 - 2x . Jika f(a) = 10 dan f (-3) = b , nilai a + b adalah Jawabannya adalah: 10. Konsep: fungsi f…
- Suatu fungsi di definisikan dengan f(x) = ax +b.… Suatu fungsi di definisikan dengan f(x) = ax +b. Jika f (4) = -1 dan f (7) = 5, maka tentukan: Rumus fungsi tersebut. Jawaban dari pertanyaan di atas adalah…