fbpx
Breaking News

Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)=2x^3 – x^2 – 4x + 1

Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)=2x^3 – x^2 – 4x + 1

Jawaban yang benar adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1

Perhatikan beberapa aturan turunan fungsi berikut:
> Jika f(x) = u ± v, maka f'(x) = u’ ± v’
> Jika f(x) = ax^(n), maka f'(x) = n.a.x^(n – 1)
> Jika f(x) = x^(n), maka f'(x) = n.x^(n – 1)
> Jika f(x) = kx, maka f'(x) = k
> Jika f(x) = k, maka f'(x) = 0 ; k = konstanta

Ingat!
Interval turun fungsi f(x) dapat ditentukan apabila f'(x) < 0, sedangkan interval naik fungsi f(x) apabila f'(x) > 0 .

Pembahasan,

Diketahui:
f(x) = 2x³ – x² – 4x + 1
Maka,
f'(x) = 3.2.x^(3-1) – 2.x^(2-1) – 4 + 0
f'(x) = 6x² – 2x – 4

• interval kurva naik
f'(x) > 0
6x² – 2x – 4 > 0

Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1

Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1

Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (memenuhi)

Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (tidak memenuhi, karena daerah yang dicari adalah > 0 )

Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (memenuhi)

Sehingga, interval kurva naik adalah x < -2/3 atau x > 1

• interval kurva turun
f'(x) < 0
6x² – 2x – 4 < 0

Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1

Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1

Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )

Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (memenuhi)

Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )

Sehingga, interval kurva turun adalah -2/3 < x < 1

Jadi, jawabannya adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1