Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)=2x^3 – x^2 – 4x + 1
Jawaban yang benar adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Perhatikan beberapa aturan turunan fungsi berikut:
> Jika f(x) = u ± v, maka f'(x) = u’ ± v’
> Jika f(x) = ax^(n), maka f'(x) = n.a.x^(n – 1)
> Jika f(x) = x^(n), maka f'(x) = n.x^(n – 1)
> Jika f(x) = kx, maka f'(x) = k
> Jika f(x) = k, maka f'(x) = 0 ; k = konstanta
Ingat!
Interval turun fungsi f(x) dapat ditentukan apabila f'(x) < 0, sedangkan interval naik fungsi f(x) apabila f'(x) > 0 .
Pembahasan,
Diketahui:
f(x) = 2x³ – x² – 4x + 1
Maka,
f'(x) = 3.2.x^(3-1) – 2.x^(2-1) – 4 + 0
f'(x) = 6x² – 2x – 4
• interval kurva naik
f'(x) > 0
6x² – 2x – 4 > 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (memenuhi)
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (tidak memenuhi, karena daerah yang dicari adalah > 0 )
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (memenuhi)
Sehingga, interval kurva naik adalah x < -2/3 atau x > 1
• interval kurva turun
f'(x) < 0
6x² – 2x – 4 < 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (memenuhi)
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Sehingga, interval kurva turun adalah -2/3 < x < 1
Jadi, jawabannya adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Rekomendasi Lain :
- Nada C ke f dalam tangga nada C berjarak... Nada C ke f dalam tangga nada C berjarak... a. 1/2 b. 1 c. 1 1/2 d. 2 1/2 Jawaban yang benar adalah D. 2 1/2. Yuk simak pembahasan berikut.…
- Tentukan kedudukan lingkaran K: x²+y²-2x-8=0… Tentukan kedudukan lingkaran K: x²+y²-2x-8=0 terhadap lingkaran L: x²+y²+4x-8y+16=0 Jawaban: bersinggungan Ingat! Langkah penyelesaian: 1. Eliminasi kedua persamaan lingkaran hingga mendapatkan persamaan garis 2. Subtitusi persamaan garis tersebut ke salah…
- Tentukan nilai x kurva turunan dan nilai x kurva… Tentukan nilai x kurva turunan dan nilai x kurva naik F(x)=x^2 - 2x +1 Jawaban yang benar yaitu : Interval kurva naik : x > 1 Interval kurva turun :…
- Jelaskan aspek pada grafik ekuilibrium Jelaskan aspek pada grafik ekuilibrium Silakan perhatikan penjelasan berikut terkait aspek grafik equilibrium; Equilibrium merupakan kondisi di mana terjadi keseimbangan antara jumlah barang yang diminta pembeli dan jumlah barang yang…
- Jika titik P (a, -4) terletak pada garis -6x + 3y =… Jika titik P (a, -4) terletak pada garis -6x + 3y = 12 maka nilai a adalah .... Jawaban yang benar adalah -4. Ingat! Jika titik (p,q) terletak pada garis…
- Suatu fungsi g dinyatakan dengan g(x) = px + q,… Suatu fungsi g dinyatakan dengan g(x) = px + q, nilai g(4) = 11 dan nilai g(2) = 5. Tentukan nilai g(-3) + g(10)! Jawaban dari pertanyaan di atas adalah…
- Jika diketahui xy = 5 dan nilai (x² + y²) = 15, maka… Jika diketahui xy = 5 dan nilai (x² + y²) = 15, maka salah satu nilai (x + y -1) adalah... Jawaban: -6 atau 4 perhatikan konsep berikut: (x +…
- Diketahui f(X)=ax+b.Jika f(-3)=-11 Dan f(7)=9… Diketahui f(X)=ax+b.Jika f(-3)=-11 Dan f(7)=9 Tentukan: a.Nilai A Dan B b.Rumus fungsi X Jawaban: a. a = 2 dan b = -5 b. f(x) = 2x - 5 Ingat! Jika…
- Kurva permintaan yang dihadapi produsen monopoli adalah .... Kurva permintaan yang dihadapi produsen monopoli adalah .... Jawaban: Menurun dari kiri atas ke kanan bawah Penjelasan: Monopolis adalah sebutan bagi penjual yang ada di pasar monopoli. Pasar monopoli merupakan…
- Jika x1 dan x2 adalah akar-akar dari persamaan… jika x1 dan x2 adalah akar-akar dari persamaan kuadrat 3x²+6x-15=0 maka nilai dari x1+x2 dan x1.x2 adalah Jawaban: -3 dan -5 Ingat konsep berikut ini: Persamaan kuadrat ax² + bx…
- Jika x dan y merupakan dari sistem persamaan… jika x dan y merupakan dari sistem persamaan {3x+5y=8} {2x-y=14} maka nilai dari x+2y adalah... Jawabannya adalah 2 Konsep : Untuk menjawab sistem persamaan dua variabel kita dapat menggunakan beberapa…
- Luas daerah yang dibatasi kurva y=x²-2x dan garis y=x adalah luas daerah yang dibatasi kurva y=x²-2x dan garis y=x adalah Jawaban : 9/2 Penyelesaian : Cari titik potong dua kurva y=x²-2x dan garis y=x : y = y x²-2x =…
- Sederhanakan perbandingan berikut : 50 m² : 30 dm² Sederhanakan perbandingan berikut : 50 m² : 30 dm² Jawaban soal ini adalah 500 : 3 Ingat! Perbandingan atau rasio adalah cara atau metode yang digunakan dalam membandingkan dua besaran…
- 1. Jika fungsi f : R->R dan fungsi g: R->R… 1. Jika fungsi f : R->R dan fungsi g: R->R ditentukan f(x) = x³ dan g(2x-3)=6x-1 maka nilai (g-¹o f-¹)(27) adalah... Jawaban : (g¯¹of¯¹)(27) = 13/3 Perhatikan penjelasan berikut ya.…
- Suatu fungsi linear didefinisikan dengan f (x) = ax… Suatu fungsi linear didefinisikan dengan f (x) = ax + b, dengan x R. Jika pada fungsi tersebut diketahui f (2) = 7 dan f (5) = 13, maka nilai…
- Sebuah peta memiliki skala 1 : 2.400.000. Jika jarak… Sebuah peta memiliki skala 1 : 2.400.000. Jika jarak antara dua kota pada peta 3,5 cm, tentukan jarak sebenarnya kedua kota tersebut! Jawaban : 84 km Ingat! konsep tangga pada…
- Jika harapan konsumen terhadap harta suatu barang di… Jika harapan konsumen terhadap harta suatu barang di masa dengan turun ia maka jumlah pemerintahan akan barang tersebut Jawabannya menurun. Pembahasan: Jika harapan konsumen terhadap harga suatu barang di masa…
- f(x² - 8)=18 - 2x² f(x - 2) = f(x² - 8)=18 - 2x² f(x - 2) = Jawaban yang benar adalah f(x-2) = 6 - 2x Nilai suatu fungsi dapat dicari dengan mensubstitusikan nilai variabel ke persamaan fungsinya.…
- Jika f(x) = (4x² - 7)⁴ (5x - 9)³, tentukan nilai f'(x): Jika f(x) = (4x² - 7)⁴ (5x - 9)³, tentukan nilai f'(x): jawaban yang benar adalah f^' (x)=(4x^2-7)^3 (5x-9)^2 (220x^2-288x-105).
- Domain dari fungsi F(×)=4×-8 adalah.... Domain dari fungsi F(×)=4×-8 adalah.... Domain Fungsi Domain atau daerah asal suatu fungsi adalah interval nilai dimana fungsi tersebut terdefinisi. f(x) = 4x - 8 fungsi f terdefinisi pada semua…
- Fungsi f dinyatakan oleh f(x) = ax + b. Jika f(1) =… Fungsi f dinyatakan oleh f(x) = ax + b. Jika f(1) = -1 dan f(3) = 5, maka nilai a dan b berturut-turut adalah … jawaban untuk soal ini adalah…
- Jika secan A = 2 , maka nilai cos ²A - Sin ²A jika secan A = 2 , maka nilai cos ²A - Sin ²A jawaban dari pertanyaan di atas adalah -1/2. Perhatikan penjelasan berikut ya.
- Diketahui fungsi f dengan f(x) = x(x*2 + 3x - 72).… Diketahui fungsi f dengan f(x) = x(x*2 + 3x - 72). Nilai x> 0 agar f'(x)=0 adalah…. Jawabannya adalah x=4 Silahkan lihat penjelasannya berikut ini. Konsep yang digunakan: Jika f(x)…
- Tentukan nilai turunan dari fungsi berikut :… Tentukan nilai turunan dari fungsi berikut : F(x)=4x^3 - 5x^2 + 6x - 2 Jawaban yang benar adalah f'(x) = 12x² - 10x + 6 Pembahasan : Ingat aturan turunan…
- Jika x dan y memenuhi system persamaan 3x−y=16 dan… Jika x dan y memenuhi system persamaan 3x−y=16 dan x+y=12, maka x+2y adalah..... A. 14 B. 17 C. 19 D. 22 Jawaban yang benar adalah B. Perhatikan konsep berikut. Penyelesaian…
- Jarak interval 8 dinamakan …. Jarak interval 8 dinamakan …. oktaf
- Persamaan kuadrat x2 +5x + 6 = 0 mempunyai akar –… Persamaan kuadrat x2 +5x + 6 = 0 mempunyai akar – akar m dan n. jika m > n maka nilai 4m + 5n adalah Jawaban yang benar untuk pertanyaan…
- Jika 4x + 14 = 10x −10, maka nilai x + 6 adalah Jika 4x + 14 = 10x −10, maka nilai x + 6 adalah jawaban untuk soal ini adalah 11. Soal tersebut merupakan materi persamaan linear satu variabel . Perhatikan perhitungan…
- Hasil dari perbandingan 2 km dan 15 m adalah Hasil dari perbandingan 2 km dan 15 m adalah Jawaban yang benar adalah 400 : 3 Konsep: Satuan jarak _km ____hm ________dam ____________ m ______________dm _________________cm ___________________mm jika turun 1…
- Jarak dari kota p ke kota q pada peta adalah 8 cm… jarak dari kota p ke kota q pada peta adalah 8 cm berapakah jarak sebenarnya dari kota p ke kota q jika skala pada peta menunjukkan 1 : 50.000 Jawaban…