Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)=2x^3 – x^2 – 4x + 1
Jawaban yang benar adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Perhatikan beberapa aturan turunan fungsi berikut:
> Jika f(x) = u ± v, maka f'(x) = u’ ± v’
> Jika f(x) = ax^(n), maka f'(x) = n.a.x^(n – 1)
> Jika f(x) = x^(n), maka f'(x) = n.x^(n – 1)
> Jika f(x) = kx, maka f'(x) = k
> Jika f(x) = k, maka f'(x) = 0 ; k = konstanta
Ingat!
Interval turun fungsi f(x) dapat ditentukan apabila f'(x) < 0, sedangkan interval naik fungsi f(x) apabila f'(x) > 0 .
Pembahasan,
Diketahui:
f(x) = 2x³ – x² – 4x + 1
Maka,
f'(x) = 3.2.x^(3-1) – 2.x^(2-1) – 4 + 0
f'(x) = 6x² – 2x – 4
• interval kurva naik
f'(x) > 0
6x² – 2x – 4 > 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (memenuhi)
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (tidak memenuhi, karena daerah yang dicari adalah > 0 )
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (memenuhi)
Sehingga, interval kurva naik adalah x < -2/3 atau x > 1
• interval kurva turun
f'(x) < 0
6x² – 2x – 4 < 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (memenuhi)
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Sehingga, interval kurva turun adalah -2/3 < x < 1
Jadi, jawabannya adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Rekomendasi Lain :
- Suatu fungsi di definisikan dengan f(x) = ax +b.… Suatu fungsi di definisikan dengan f(x) = ax +b. Jika f (4) = -1 dan f (7) = 5, maka tentukan: Rumus fungsi tersebut. Jawaban dari pertanyaan di atas adalah…
- Tentukan nilai turunan dari fungsi berikut :… Tentukan nilai turunan dari fungsi berikut : F(x)=4x^3 - 5x^2 + 6x - 2 Jawaban yang benar adalah f'(x) = 12x² - 10x + 6 Pembahasan : Ingat aturan turunan…
- Diketahui fungsi f(x)=x+1 dan g(x)=x²−3x, turunan… Diketahui fungsi f(x)=x+1 dan g(x)=x²−3x, turunan pertama dari f(x)⋅g(x) adalah.... A. 2x−3 B. x³−2x²−3x C. x³+2x²−3x D. 3x²−4x−3 E. 3x²+4x−3 jawaban untuk soal di atas adalah D. 3x² – 4x…
- Persamaan garis singgung kurva y=x-3x+5 yang… Persamaan garis singgung kurva y=x-3x+5 yang sejajardengan garis 5x-y+1=0adalah.... jawaban dari pertanyaan di atas adalah y = 5x-11. Perhatikan penjelasan berikut ya.
- Persamaan garis singgung pada kurva y=3 sin 4x pada… Persamaan garis singgung pada kurva y=3 sin 4x pada titik berabsis x=π/6 adalah... Jawabannya : x = π/6 = (180°)/6 = 30° f (x) = 3.sin4x f' (x) = 3.4…
- Perhatikan grafik fungsi kuadrai Tentukan : sumbu simetri Perhatikan grafik fungsi kuadrai Tentukan : sumbu simetri Jawaban dari pertanyaan di atas adalah x = 2 Perhatikan konsep berikut. Persamaan kuadrat yang melalui (x1, 0) dan (x2, 0) dirumuskan:…
- Jika diketahui xy = 5 dan nilai (x² + y²) = 15, maka… Jika diketahui xy = 5 dan nilai (x² + y²) = 15, maka salah satu nilai (x + y -1) adalah... Jawaban: -6 atau 4 perhatikan konsep berikut: (x +…
- Sebuah menara tampak pada layar tipi dengan tinggi… Sebuah menara tampak pada layar tipi dengan tinggi 24 cm dan lebar 10 cm. Berapakah lebar sebenarnya menara tersebut jika tinggi sebenarnya 18 m. Jawaban yang benar adalah 7,5 m…
- Saat harga barang Rp 16.000 per unit, permintaan… Saat harga barang Rp 16.000 per unit, permintaan Dini sebanyak 18 unit. Namun, saat harga barang turun menjadi Rp 14.000 per unit, permintaan Dini naik sebanyak 22 unit. Berapa fungsi…
- Interval nada adalah? interval nada adalah? Interval nada adalah jarak frekuensi antara satu nada dengan nada lainnya , interval nada ini yang berfungsi sebagai jarak antar nada Semoga bermanfaat yaa :))
- Nada C ke f dalam tangga nada C berjarak... Nada C ke f dalam tangga nada C berjarak... a. 1/2 b. 1 c. 1 1/2 d. 2 1/2 Jawaban yang benar adalah D. 2 1/2. Yuk simak pembahasan berikut.…
- Jika x1 dan x2 adalah akar-akar dari persamaan… jika x1 dan x2 adalah akar-akar dari persamaan kuadrat 3x²+6x-15=0 maka nilai dari x1+x2 dan x1.x2 adalah Jawaban: -3 dan -5 Ingat konsep berikut ini: Persamaan kuadrat ax² + bx…
- 1. Jika fungsi f : R->R dan fungsi g: R->R… 1. Jika fungsi f : R->R dan fungsi g: R->R ditentukan f(x) = x³ dan g(2x-3)=6x-1 maka nilai (g-¹o f-¹)(27) adalah... Jawaban : (g¯¹of¯¹)(27) = 13/3 Perhatikan penjelasan berikut ya.…
- Diketahui persamaan lingkaran L: x ^ 2 + y ^ 2 - 8x… Diketahui persamaan lingkaran L: x ^ 2 + y ^ 2 - 8x + 2y - 3 = 0 dan garis g: x-y+ m = 0 Jika garis g memotong…
- Disajikan fungsi kuadrat f(x)=x²+6x-7dengan daerah… Disajikan fungsi kuadrat f(x)=x²+6x-7dengan daerah asal {-7 ≤ x ≤ 1,x £ R} Kurva fungsi melalui titik.... Jawabannya adalah (-7,0),(-6,-7),(-5,-12),(-4,-15),(-3,-16),(-2,-15),(-1,-12),(0,-7) dan (1,0). Titik yang dilalui kurva fungsi f(x) adalah (x,…
- f(x² - 8)=18 - 2x² f(x - 2) = f(x² - 8)=18 - 2x² f(x - 2) = Jawaban yang benar adalah f(x-2) = 6 - 2x Nilai suatu fungsi dapat dicari dengan mensubstitusikan nilai variabel ke persamaan fungsinya.…
- Diketahui f(x)=x³-3x²-15. Tentukan interval turun… diketahui f(x)=x³-3x²-15. Tentukan interval turun dari fungsi f(x) jawaban yang benar adalah {0 < x < 2}. Konsep: Misalkan diketahui f(x) = ax^n maka f'(x) = anx^(n - 1) Jika…
- Berikut ini, fungsi manakah yang memiliki nilai… Berikut ini, fungsi manakah yang memiliki nilai maksimum atau minimum? f(x) = 16 − 9x² Jawaban yang benar fungsi f(x) = 16 − 9x² memiliki nilai maksimum. Perhatikan konsep berikut.…
- Jarak dua kota pada peta adalah 10 cm. jika skala… Jarak dua kota pada peta adalah 10 cm. jika skala peta 1: 400.000. Jarak dua kota sebenarnya adalah... Jawaban : 40 km Ingat! konsep tangga pada satuan panjang km ->…
- Suatu fungsi linear didefinisikan dengan f (x) = ax… Suatu fungsi linear didefinisikan dengan f (x) = ax + b, dengan x R. Jika pada fungsi tersebut diketahui f (2) = 7 dan f (5) = 13, maka nilai…
- Jika titik P (a, -4) terletak pada garis -6x + 3y =… Jika titik P (a, -4) terletak pada garis -6x + 3y = 12 maka nilai a adalah .... Jawaban yang benar adalah -4. Ingat! Jika titik (p,q) terletak pada garis…
- Diketahui rumus fungsi f(x) = 6 - 2x . Jika f(a) =… Diketahui rumus fungsi f(x) = 6 - 2x . Jika f(a) = 10 dan f (-3) = b , nilai a + b adalah Jawabannya adalah: 10. Konsep: fungsi f…
- 2. nilai dari cos 330° = ..... 2. nilai dari cos 330° = ..... Jawaban yang benar adalah ½√3 Sistem koordinat dapat terbagi ke dalam empat wilayah kuadran, yaitu - Kuadran 1 berada dalam interval 0° ≤…
- Tentukan nilai x kurva turunan dan nilai x kurva… Tentukan nilai x kurva turunan dan nilai x kurva naik F(x)=x^2 - 2x +1 Jawaban yang benar yaitu : Interval kurva naik : x > 1 Interval kurva turun :…
- Jika 2x+3y=16 dan 3x−y=13, maka nilai x dan y adalah... Jika 2x+3y=16 dan 3x−y=13, maka nilai x dan y adalah... jawaban untuk soal ini adalah ???? = 5 dan y = 2. Soal tersebut merupakan materi Sistem Persamaan Linear Dua…
- Jika harapan konsumen terhadap harta suatu barang di… Jika harapan konsumen terhadap harta suatu barang di masa dengan turun ia maka jumlah pemerintahan akan barang tersebut Jawabannya menurun. Pembahasan: Jika harapan konsumen terhadap harga suatu barang di masa…
- Suhu udara di puncak gunung −2°C, karena hari hujan… Suhu udara di puncak gunung −2°C, karena hari hujan suhunya turun lagi 3°C, suhu udara di puncak gunung tersebut sekarang adalah.... A. 5°C B. 1°C C. -1°C D. 5°C Jawaban…
- Tentukan kedudukan lingkaran K: x²+y²-2x-8=0… Tentukan kedudukan lingkaran K: x²+y²-2x-8=0 terhadap lingkaran L: x²+y²+4x-8y+16=0 Jawaban: bersinggungan Ingat! Langkah penyelesaian: 1. Eliminasi kedua persamaan lingkaran hingga mendapatkan persamaan garis 2. Subtitusi persamaan garis tersebut ke salah…
- Diketahui fungsi f(x)=ax+b,f(−1)=1 dan f(1)=5 maka… Diketahui fungsi f(x)=ax+b,f(−1)=1 dan f(1)=5 maka nilai 3a−b=…. jawaban untuk soal ini adalah 3 Soal tersebut merupakan materi fungsi. Perhatikan perhitungan berikut ya. Diketahui, f(x)=ax+b f(−1)=1 f(1)=5 Ditanyakan, nilai 3a…
- Jika jarak pada peta dari kedua kota adalah 3 cm dan… Jika jarak pada peta dari kedua kota adalah 3 cm dan skalanya 1 : 12.500.000, maka berapa jarak kedua kota tersebut yang sebenarnya? Jawaban : 375 km Ingat! konsep tangga…