Tentukan interval nilai x untuk kurva naik dan kurva turun pada persamaan F(x)=2x^3 – x^2 – 4x + 1
Jawaban yang benar adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Perhatikan beberapa aturan turunan fungsi berikut:
> Jika f(x) = u ± v, maka f'(x) = u’ ± v’
> Jika f(x) = ax^(n), maka f'(x) = n.a.x^(n – 1)
> Jika f(x) = x^(n), maka f'(x) = n.x^(n – 1)
> Jika f(x) = kx, maka f'(x) = k
> Jika f(x) = k, maka f'(x) = 0 ; k = konstanta
Ingat!
Interval turun fungsi f(x) dapat ditentukan apabila f'(x) < 0, sedangkan interval naik fungsi f(x) apabila f'(x) > 0 .
Pembahasan,
Diketahui:
f(x) = 2x³ – x² – 4x + 1
Maka,
f'(x) = 3.2.x^(3-1) – 2.x^(2-1) – 4 + 0
f'(x) = 6x² – 2x – 4
• interval kurva naik
f'(x) > 0
6x² – 2x – 4 > 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (memenuhi)
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (tidak memenuhi, karena daerah yang dicari adalah > 0 )
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (memenuhi)
Sehingga, interval kurva naik adalah x < -2/3 atau x > 1
• interval kurva turun
f'(x) < 0
6x² – 2x – 4 < 0
Pembuat Nol,
6x² – 2x – 4 = 0 … (bagi 2)
3x² – x – 2 = 0
Dengan pemfaktoran, diperoleh:
(3x + 2)(x – 1) = 0
3x + 2 = 0 atau x – 1 = 0
3x = -2 atau x = 1
x = -2/3 atau x = 1
Perhatikan garis bilangan berikut,
<———-°———°————>
………(-2/3)……..(1)…………..
Sehingga, ada 3 darrah yang terbentuk, yaitu:
x < -2/3 , -2/3 < x < 1, x > 1
Untuk x < -2/3, misal x = -1, diperoleh:
= 6x² – 2x – 4
= 6(-1)² – 2(-1) – 4
= 6(1) + 2 – 4
= 6 – 2
= 4 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Untuk -2/3 < x < 1, misal x = 0, diperoleh:
= 6x² – 2x – 4
= 6(0)² – 2(0) – 4
= o – 0 – 4
= -4 (memenuhi)
Untuk x > 1, misal x = 2, diperoleh:
= 6x² – 2x – 4
= 6(2)² – 2(2) – 4
= 6(4) – 4 – 4
= 24 – 8
= 16 … (tidak memenuhi, karena daerah yang dicari adalah < 0 )
Sehingga, interval kurva turun adalah -2/3 < x < 1
Jadi, jawabannya adalah:
Interval kurva naik : x < -2/3 atau x > 1
Interval kurva turun : -2/3 < x < 1
Rekomendasi Lain :
- jika 0,1818181818181.. dinyatakan ke dalam bentuk… jika 0,1818181818181.. dinyatakan ke dalam bentuk a/b dengan a dan b masing masing bilangan bulat positif maka nilai dari b - a adalah... A. 6 B. 7 C. 8 D.9…
- 2. nilai dari cos 330° = ..... 2. nilai dari cos 330° = ..... Jawaban yang benar adalah ½√3 Sistem koordinat dapat terbagi ke dalam empat wilayah kuadran, yaitu - Kuadran 1 berada dalam interval 0° ≤…
- Sederhanakan perbandingan berikut : 540 gram : 4,5 kg Sederhanakan perbandingan berikut : 540 gram : 4,5 kg Jawaban soal ini adalah 6 : 5 Ingat! Perbandingan atau rasio adalah cara atau metode yang digunakan dalam membandingkan dua besaran…
- Jika titik P (a, -4) terletak pada garis -6x + 3y =… Jika titik P (a, -4) terletak pada garis -6x + 3y = 12 maka nilai a adalah .... Jawaban yang benar adalah -4. Ingat! Jika titik (p,q) terletak pada garis…
- Persamaan garis singgung kurva y=x-3x+5 yang… Persamaan garis singgung kurva y=x-3x+5 yang sejajardengan garis 5x-y+1=0adalah.... jawaban dari pertanyaan di atas adalah y = 5x-11. Perhatikan penjelasan berikut ya.
- Apa yang di maksud dengan penawaran apa yang di maksud dengan penawaran Penawaran adalah keseluruhan jumlah barang yang tersedia untuk ditawarkan pada berbagai tingkat harga tertentu dan waktu tertentu. Pembahasan : Penawaran adalah keseluruhan jumlah barang…
- Diketahui rumus fungsi f(x) = 6 - 2x . Jika f(a) =… Diketahui rumus fungsi f(x) = 6 - 2x . Jika f(a) = 10 dan f (-3) = b , nilai a + b adalah Jawabannya adalah: 10. Konsep: fungsi f…
- Jika x1 dan x2 adalah akar-akar dari persamaan… jika x1 dan x2 adalah akar-akar dari persamaan kuadrat 3x²+6x-15=0 maka nilai dari x1+x2 dan x1.x2 adalah Jawaban: -3 dan -5 Ingat konsep berikut ini: Persamaan kuadrat ax² + bx…
- Suatu fungsi di definisikan dengan f(x) = ax +b.… Suatu fungsi di definisikan dengan f(x) = ax +b. Jika f (4) = -1 dan f (7) = 5, maka tentukan: Rumus fungsi tersebut. Jawaban dari pertanyaan di atas adalah…
- Jika 4x + 14 = 10x −10, maka nilai x + 6 adalah Jika 4x + 14 = 10x −10, maka nilai x + 6 adalah jawaban untuk soal ini adalah 11. Soal tersebut merupakan materi persamaan linear satu variabel . Perhatikan perhitungan…
- Tentukan kedudukan lingkaran K: x²+y²-2x-8=0… Tentukan kedudukan lingkaran K: x²+y²-2x-8=0 terhadap lingkaran L: x²+y²+4x-8y+16=0 Jawaban: bersinggungan Ingat! Langkah penyelesaian: 1. Eliminasi kedua persamaan lingkaran hingga mendapatkan persamaan garis 2. Subtitusi persamaan garis tersebut ke salah…
- Disajikan fungsi kuadrat f(x)=x²+6x-7dengan daerah… Disajikan fungsi kuadrat f(x)=x²+6x-7dengan daerah asal {-7 ≤ x ≤ 1,x £ R} Kurva fungsi melalui titik.... Jawabannya adalah (-7,0),(-6,-7),(-5,-12),(-4,-15),(-3,-16),(-2,-15),(-1,-12),(0,-7) dan (1,0). Titik yang dilalui kurva fungsi f(x) adalah (x,…
- Persamaan garis singgung kurva y = 2x² + x + 1… Persamaan garis singgung kurva y = 2x² + x + 1 dititik berabsis - 1 adalah... jawaban yang benar adalah 3x + y = -1. Konsep: Persamaan garis singgung kurva…
- Nilai maksimum fungsi f(x) = 2x² - 8x pada interval… Nilai maksimum fungsi f(x) = 2x² - 8x pada interval -1≤x≤1 adalah Jawaban: 10 Ingat! Titik puncak fungsi f(x) = ax² + bx + c adalah (xp ,yp) xp =…
- Hasil dari perbandingan 2 km dan 15 m adalah Hasil dari perbandingan 2 km dan 15 m adalah Jawaban yang benar adalah 400 : 3 Konsep: Satuan jarak _km ____hm ________dam ____________ m ______________dm _________________cm ___________________mm jika turun 1…
- Tentukan nilai x kurva turunan dan nilai x kurva… Tentukan nilai x kurva turunan dan nilai x kurva naik F(x)=x^2 - 2x +1 Jawaban yang benar yaitu : Interval kurva naik : x > 1 Interval kurva turun :…
- Berikut ini, fungsi manakah yang memiliki nilai… Berikut ini, fungsi manakah yang memiliki nilai maksimum atau minimum? f(x) = 2x² − 5x − 7 Jawaban yang benar fungsi f(x) = 2x² − 5x − 7 memiliki nilai…
- Kurva permintaan yang dihadapi produsen monopoli adalah .... Kurva permintaan yang dihadapi produsen monopoli adalah .... Jawaban: Menurun dari kiri atas ke kanan bawah Penjelasan: Monopolis adalah sebutan bagi penjual yang ada di pasar monopoli. Pasar monopoli merupakan…
- Salah satu akar persamaan kuadrat 2x² + qx - 5 = 0… Salah satu akar persamaan kuadrat 2x² + qx - 5 = 0 adalah -1, maka nilai q yang tepat adalah.. Jawaban : -3 Ingat! Jika m merupakan salah satu akar…
- Jika diketahui a+b=31 b+c=42 a+c=27 maka nilai dari… jika diketahui a+b=31 b+c=42 a+c=27 maka nilai dari 3a+3b+3c adalah diketahui persamaan a+b = 31 ..... (1) b+c = 42 ..... (2) a+c = 27 ..... (3) eliminasi a dengan…
- Sebuah peta memiliki skala 1 : 2.400.000. Jika jarak… Sebuah peta memiliki skala 1 : 2.400.000. Jika jarak antara dua kota pada peta 3,5 cm, tentukan jarak sebenarnya kedua kota tersebut! Jawaban : 84 km Ingat! konsep tangga pada…
- Interval yang memiliki jarak 1 1/2 pada penggalan… Interval yang memiliki jarak 1 1/2 pada penggalan melodi lagu diatas adalah... a. mi (3) ke sol (5) b. fa (4) ke mi (3) c. sol (5) ke la (6)…
- Tentukan nilai turunan dari fungsi berikut :… Tentukan nilai turunan dari fungsi berikut : F(x)=4x^3 - 5x^2 + 6x - 2 Jawaban yang benar adalah f'(x) = 12x² - 10x + 6 Pembahasan : Ingat aturan turunan…
- Tentukan kedudukan lingkaran K: x²+y²-2x-8=0… Tentukan kedudukan lingkaran K: x²+y²-2x-8=0 terhadap lingkaran L: x²+y²+4x-8y+16=0 Jawaban: bersinggungan Ingat! Langkah penyelesaian: 1. Eliminasi kedua persamaan lingkaran hingga mendapatkan persamaan garis 2. Subtitusi persamaan garis tersebut ke salah…
- Langkah ke empat dalam urutan tangga nada C mayor… Langkah ke empat dalam urutan tangga nada C mayor disebut . . . a.prime b.septim c.oktaf d.kuart Jawaban atas pertanyaan tersebut adalah d.Kuart. Berikut ini penjelasannya. Interval dalam musik merupakan…
- Diketahui fungsi f dengan f(x) = x(x*2 + 3x - 72).… Diketahui fungsi f dengan f(x) = x(x*2 + 3x - 72). Nilai x> 0 agar f'(x)=0 adalah…. Jawabannya adalah x=4 Silahkan lihat penjelasannya berikut ini. Konsep yang digunakan: Jika f(x)…
- Jika f(x) = (4x² - 7)⁴ (5x - 9)³, tentukan nilai f'(x): Jika f(x) = (4x² - 7)⁴ (5x - 9)³, tentukan nilai f'(x): jawaban yang benar adalah f^' (x)=(4x^2-7)^3 (5x-9)^2 (220x^2-288x-105).
- Jika diketahui xy = 5 dan nilai (x² + y²) = 15, maka… Jika diketahui xy = 5 dan nilai (x² + y²) = 15, maka salah satu nilai (x + y -1) adalah... Jawaban: -6 atau 4 perhatikan konsep berikut: (x +…
- Diketahui f(x)=x³-3x²-15. Tentukan interval turun… diketahui f(x)=x³-3x²-15. Tentukan interval turun dari fungsi f(x) jawaban yang benar adalah {0 < x < 2}. Konsep: Misalkan diketahui f(x) = ax^n maka f'(x) = anx^(n - 1) Jika…
- Penyelesaian dari persamaan 2????^2 + 3???? − 9 = 0… Penyelesaian dari persamaan 2????^2 + 3???? − 9 = 0 ????????????????????ℎ ???? ???????????? ????. Jika p ˃ q, tentukan persamaan kuadrat baru yang akar-akarnya 2p dan 2q ! Jawaban yang…