Diketahui vektor m 3 3 dan vektor n 4 2 jika besar sudut yang dibutuhkan kedua vektor adalah 135°. Tentukan hasil kali kedua vektor tersebut.

Diketahui vektor m 3 3 dan vektor n 4 2 jika besar sudut yang dibutuhkan kedua vektor adalah 135°. Tentukan hasil kali kedua vektor tersebut.

jawaban untuk soal di atas -6√5

Asumsi soal:
Diketahui vektor m = (3, 3) dan vektor n = (4, 2) jika besar sudut yang dibentuk kedua vektor adalah 135°. Tentukan hasil kali kedua vektor tersebut!

Jika diketahui vektor a = (a1, a2) dan vektor b = (b1, b2), dan sudut antara kedua vektor adalah θ maka:
panjang vektor a = |a| = √(a1²+a2²)
a·b = |a| |b| cos θ

Ingat:
cos (180⁰-θ) = -cos θ
cos 45⁰ = ½√2
√(a·b) = √a·√b
√b·√b = b
a√b · c√d = (a·c)·(√b·√d)
a·(-b) = -a·b
(a·b)/c = (a/c)·b

Diketahui:
vektor m = (3, 3)
vektor n = (4, 2)
θ = 135⁰
Ditanya:
m·n = …..
Jawab:
cos 135⁰
= cos (180⁰-45⁰)
= -cos 45⁰
= -½√2

Panjang vektor m:
|m| = √(3²+3²)
|m| = √(9+9)
|m| = √(2 · 9)
|m| = √2 · √9
|m| = √2 · 3
|m| = 3√2 satuan panjang

Panjang vektor n:
|n| = √(4²+2²)
|n| = √(16+4)
|n| = √20
|n| = √(4 · 5)
|b| = √4 · √5
|n| = 2 · √5
|n| = 2√5 satuan panjang

m·n
= |m| |n| cos 135⁰
= (3√2) · (2√5) ·(-½√2)
= -(3√2) · (2√5) ·(½√2)
= -(3 · 2 ·√2 · √5 ·√2)/2
= -(3 · 2 ·2 · √5)/2
= -(12√5)/2
= -(12/2)√5
= -6√5

Jadi, hasil kali kedua vektor tersebut adalah -6√5

Semoga membantu ya